线性表 - 链表
线性表 - 链表
n个节点离散分配,彼此通过指针相连,每个节点只有一个前驱节点,每个节点只有一个后续节点,首节点没有前驱节点,尾节点没有后续节点。确定一个链表我们只需要头指针,通过头指针就可以把整个链表都能推出来。
知识点
优缺点
链表优点
- 空间没有限制
- 插入删除元素很快
链表缺点 存取速度很慢
分类
- 单向链表 一个节点指向下一个节点。
- 双向链表 一个节点有两个指针域。
- 循环链表 能通过任何一个节点找到其他所有的节点,将两种(双向/单向)链表的最后一个结点指向第一个结点从而实现循环。
实现
节点
public class Node {
//数据域
public int data;
//指针域,指向下一个节点
public Node next;
public Node() {
}
public Node(int data) {
this.data = data;
}
public Node(int data, Node next) {
this.data = data;
this.next = next;
}
}
如上,一个链表节点对象就创建完成了,但理解链表本身并不难,但做相关的操作却并非易事,其算法包括且不限于:
- 插入节点
- 遍历
- 查找
- 清空
- 销毁
- 求长度
- 排序
- 删除节点
- 去重
JDK中关于链表的实现,请参考:
链表相关题目
链表是空节点,或者有一个值和一个指向下一个链表的指针,因此很多链表问题可以用递归来处理。
找出两个链表的交点
160. Intersection of Two Linked Lists (Easy)在新窗口打开
A: a1 → a2
↘
c1 → c2 → c3
↗
B: b1 → b2 → b3
要求: 时间复杂度为 O(N),空间复杂度为 O(1)
设 A 的长度为 a + c,B 的长度为 b + c,其中 c 为尾部公共部分长度,可知 a + c + b = b + c + a。
当访问 A 链表的指针访问到链表尾部时,令它从链表 B 的头部开始访问链表 B;同样地,当访问 B 链表的指针访问到链表尾部时,令它从链表 A 的头部开始访问链表 A。这样就能控制访问 A 和 B 两个链表的指针能同时访问到交点。
public ListNode getIntersectionNode(ListNode headA, ListNode headB) {
ListNode l1 = headA, l2 = headB;
while (l1 != l2) {
l1 = (l1 == null) ? headB : l1.next;
l2 = (l2 == null) ? headA : l2.next;
}
return l1;
}
如果只是判断是否存在交点,那么就是另一个问题,即 编程之美 3.6 的问题。有两种解法:
- 把第一个链表的结尾连接到第二个链表的开头,看第二个链表是否存在环;
- 或者直接比较两个链表的最后一个节点是否相同。
链表反转
206. Reverse Linked List (Easy)在新窗口打开
递归
public ListNode reverseList(ListNode head) {
if (head == null || head.next == null) {
return head;
}
ListNode next = head.next;
ListNode newHead = reverseList(next);
next.next = head;
head.next = null;
return newHead;
}
头插法
public ListNode reverseList(ListNode head) {
ListNode newHead = new ListNode(-1);
while (head != null) {
ListNode next = head.next;
head.next = newHead.next;
newHead.next = head;
head = next;
}
return newHead.next;
}
归并两个有序的链表
21. Merge Two Sorted Lists (Easy)在新窗口打开
public ListNode mergeTwoLists(ListNode l1, ListNode l2) {
if (l1 == null) return l2;
if (l2 == null) return l1;
if (l1.val < l2.val) {
l1.next = mergeTwoLists(l1.next, l2);
return l1;
} else {
l2.next = mergeTwoLists(l1, l2.next);
return l2;
}
}
从有序链表中删除重复节点
83. Remove Duplicates from Sorted List (Easy)在新窗口打开
Given 1->1->2, return 1->2.
Given 1->1->2->3->3, return 1->2->3.
public ListNode deleteDuplicates(ListNode head) {
if (head == null || head.next == null) return head;
head.next = deleteDuplicates(head.next);
return head.val == head.next.val ? head.next : head;
}
删除链表的倒数第 n 个节点
19. Remove Nth Node From End of List (Medium)在新窗口打开
Given linked list: 1->2->3->4->5, and n = 2.
After removing the second node from the end, the linked list becomes 1->2->3->5.
public ListNode removeNthFromEnd(ListNode head, int n) {
ListNode fast = head;
while (n-- > 0) {
fast = fast.next;
}
if (fast == null) return head.next;
ListNode slow = head;
while (fast.next != null) {
fast = fast.next;
slow = slow.next;
}
slow.next = slow.next.next;
return head;
}
交换链表中的相邻结点
24. Swap Nodes in Pairs (Medium)在新窗口打开
Given 1->2->3->4, you should return the list as 2->1->4->3.
题目要求: 不能修改结点的 val 值,O(1) 空间复杂度。
public ListNode swapPairs(ListNode head) {
ListNode node = new ListNode(-1);
node.next = head;
ListNode pre = node;
while (pre.next != null && pre.next.next != null) {
ListNode l1 = pre.next, l2 = pre.next.next;
ListNode next = l2.next;
l1.next = next;
l2.next = l1;
pre.next = l2;
pre = l1;
}
return node.next;
}
链表求和
445. Add Two Numbers II (Medium)在新窗口打开
Input: (7 -> 2 -> 4 -> 3) + (5 -> 6 -> 4)
Output: 7 -> 8 -> 0 -> 7
题目要求: 不能修改原始链表。
public ListNode addTwoNumbers(ListNode l1, ListNode l2) {
Stack<Integer> l1Stack = buildStack(l1);
Stack<Integer> l2Stack = buildStack(l2);
ListNode head = new ListNode(-1);
int carry = 0;
while (!l1Stack.isEmpty() || !l2Stack.isEmpty() || carry != 0) {
int x = l1Stack.isEmpty() ? 0 : l1Stack.pop();
int y = l2Stack.isEmpty() ? 0 : l2Stack.pop();
int sum = x + y + carry;
ListNode node = new ListNode(sum % 10);
node.next = head.next;
head.next = node;
carry = sum / 10;
}
return head.next;
}
private Stack<Integer> buildStack(ListNode l) {
Stack<Integer> stack = new Stack<>();
while (l != null) {
stack.push(l.val);
l = l.next;
}
return stack;
}
回文链表
234. Palindrome Linked List (Easy)在新窗口打开
题目要求: 以 O(1) 的空间复杂度来求解。
切成两半,把后半段反转,然后比较两半是否相等。
public boolean isPalindrome(ListNode head) {
if (head == null || head.next == null) return true;
ListNode slow = head, fast = head.next;
while (fast != null && fast.next != null) {
slow = slow.next;
fast = fast.next.next;
}
if (fast != null) slow = slow.next; // 偶数节点,让 slow 指向下一个节点
cut(head, slow); // 切成两个链表
return isEqual(head, reverse(slow));
}
private void cut(ListNode head, ListNode cutNode) {
while (head.next != cutNode) {
head = head.next;
}
head.next = null;
}
private ListNode reverse(ListNode head) {
ListNode newHead = null;
while (head != null) {
ListNode nextNode = head.next;
head.next = newHead;
newHead = head;
head = nextNode;
}
return newHead;
}
private boolean isEqual(ListNode l1, ListNode l2) {
while (l1 != null && l2 != null) {
if (l1.val != l2.val) return false;
l1 = l1.next;
l2 = l2.next;
}
return true;
}
分隔链表
725. Split Linked List in Parts(Medium)在新窗口打开
Input:
root = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], k = 3
Output: [[1, 2, 3, 4], [5, 6, 7], [8, 9, 10]]
Explanation:
The input has been split into consecutive parts with size difference at most 1, and earlier parts are a larger size than the later parts.
题目描述: 把链表分隔成 k 部分,每部分的长度都应该尽可能相同,排在前面的长度应该大于等于后面的。
public ListNode[] splitListToParts(ListNode root, int k) {
int N = 0;
ListNode cur = root;
while (cur != null) {
N++;
cur = cur.next;
}
int mod = N % k;
int size = N / k;
ListNode[] ret = new ListNode[k];
cur = root;
for (int i = 0; cur != null && i < k; i++) {
ret[i] = cur;
int curSize = size + (mod-- > 0 ? 1 : 0);
for (int j = 0; j < curSize - 1; j++) {
cur = cur.next;
}
ListNode next = cur.next;
cur.next = null;
cur = next;
}
return ret;
}
链表元素按奇偶聚集
328. Odd Even Linked List (Medium)在新窗口打开
Example:
Given 1->2->3->4->5->NULL,
return 1->3->5->2->4->NULL.
public ListNode oddEvenList(ListNode head) {
if (head == null) {
return head;
}
ListNode odd = head, even = head.next, evenHead = even;
while (even != null && even.next != null) {
odd.next = odd.next.next;
odd = odd.next;
even.next = even.next.next;
even = even.next;
}
odd.next = evenHead;
return head;
}