数据挖掘 - 10大算法汇总
国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART。
推荐学习
- 博客园@刘建平Pinard 的机器学习,数据挖掘系列在新窗口打开
国际权威的学术组织the IEEE International Conference on Data Mining (ICDM) 2006年12月评选出了数据挖掘领域的十大经典算法: C4.5, k-Means, SVM, Apriori, EM, PageRank, AdaBoost, kNN, Naive Bayes, and CART。
本文主要对推荐算法整体知识点做汇总,做到总体的理解;深入理解需要再看专业的材料。
推荐根据用户兴趣和行为特点,向用户推荐所需的信息或商品,帮助用户在海量信息中快速发现真正所需的商品,提高用户黏性,促进信息点击和商品销售。
帮用户找到想要的东西,谈何容易。商品茫茫多,甚至是我们自己,也经常点开淘宝,面对眼花缭乱的打折活动不知道要买啥。在经济学中,有一个著名理论叫长尾理论(The Long Tail)。套用在互联网领域中,指的就是最热的那一小部分资源将得到绝大部分的关注,而剩下的很大一部分资源却鲜少有人问津。这不仅造成了资源利用上的浪费,也让很多口味偏小众的用户无法找到自己感兴趣的内容。
本文主要介绍常用的负载均衡算法和Nginx中支持的负载均衡算法。
常见的负载均衡算法包含:
Snowflake,雪花算法是由Twitter开源的分布式ID生成算法,以划分命名空间的方式将 64-bit位分割成多个部分,每个部分代表不同的含义。这种就是将64位划分为不同的段,每段代表不同的涵义,基本就是时间戳、机器ID和序列数。为什么如此重要?因为它提供了一种ID生成及生成的思路,当然这种方案就是需要考虑时钟回拨的问题以及做一些 buffer的缓冲设计提高性能。
Snowflake,雪花算法是由Twitter开源的分布式ID生成算法,以划分命名空间的方式将 64-bit位分割成多个部分,每个部分代表不同的含义。而 Java中64bit的整数是Long类型,所以在 Java 中 SnowFlake 算法生成的 ID 就是 long 来存储的。
ZAB 协议全称:Zookeeper Atomic Broadcast(Zookeeper 原子广播协议), 它应该是所有一致性协议中生产环境中应用最多的了。为什么呢?因为它是为 Zookeeper 设计的分布式一致性协议!
Paxos是出了名的难懂,而Raft正是为了探索一种更易于理解的一致性算法而产生的。它的首要设计目的就是易于理解,所以在选主的冲突处理等方式上它都选择了非常简单明了的解决方案。
提示
强烈推荐通过如下资料学习raft。
Paxos算法是Lamport宗师提出的一种基于消息传递的分布式一致性算法,使其获得2013年图灵奖。自Paxos问世以来就持续垄断了分布式一致性算法,Paxos这个名词几乎等同于分布式一致性, 很多分布式一致性算法都由Paxos演变而来。
Paxos算法是Lamport宗师提出的一种基于消息传递的分布式一致性算法,使其获得2013年图灵奖。
Paxos由Lamport于1998年在《The Part-Time Parliament》论文中首次公开,最初的描述使用希腊的一个小岛Paxos作为比喻,描述了Paxos小岛中通过决议的流程,并以此命名这个算法,但是这个描述理解起来比较有挑战性。后来在2001年,Lamport觉得同行不能理解他的幽默感,于是重新发表了朴实的算法描述版本《Paxos Made Simple》。
一致性Hash算法是个经典算法,Hash环的引入是为解决
单调性(Monotonicity)
的问题;虚拟节点的引入是为了解决平衡性(Balance)
问题。
在分布式集群中,对机器的添加删除,或者机器故障后自动脱离集群这些操作是分布式集群管理最基本的功能。如果采用常用的hash(object)%N算法,那么在有机器添加或者删除后,很多原有的数据就无法找到了,这样严重的违反了单调性原则。
本文总结下常见的分布式算法,主要是分布式中的一致性算法。
单调性(Monotonicity)
的问题;虚拟节点的引入是为了解决平衡性(Balance)
问题MapReduce是一种计算模型, 本质上是
分治/hash_map/归并排序
这种方式在分布式下的延伸。
MapReduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE)。这样做的好处是可以在任务被分解后,可以通过大量机器进行并行计算,减少整个操作的时间。但如果你要我再通俗点介绍,那么,说白了,Mapreduce的原理就是一个归并排序。